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Background
• There are three models currently used for 

welfare analysis purposes:
– The Tow-Cost Model (TCM) 
– The Ohio River Navigation Investment Model 

(ORNIM) 
– The ESSENCE Model 

• Each of these models define demand in terms of 
O-D-C triples  
– Each of these models further makes an assumption 

about the behavior of demand in response to rate 
movements:



Contribution to the Literature

• There is little empirical work looking at the 
interactions of firms in space 

• There is little transportation demand work 
incorporating space 

• I theoretically and empirically analyze the 
interactions of agricultural elevators 
incorporating the spatial attributes of the 
elevators



My Approach

• The O-D-C triples reflect the decisions of port 
elevators

• This study examines the responsiveness of 
these elevators to barge rates using:
– A model of transportation demand 
– And the interrelated supply decisions of port elevators

• The model takes into account geographic space
• Using this model, elasticity is found to be 

reasonably elastic



Background

• The Market Setting:
– Focusing on agricultural commodities
– At harvest, the farmers must decide where to 

sell their crops
– These crops almost always go from the 

farmer to a gathering point where they are 
then sent to their final destination

– These gathering points compete against each 
other in the procurement of these crops



Theoretical Model
• Assume that: 

– There are n=1,2,….,N elevators 
– Elevators are located D=d12,d23,….,dn-1n miles apart 
– Grain is evenly distributed between the elevators with 

parameter y. 
– Farmers choose where to send their grain according to:

– According to this equation, each elevator’s market area 
is defined by the location of the indifferent customer:
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Theoretical Model
• Using this knowledge, total output for 

elevator A is:
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Theoretical Model
• This equation can be rearranged to:

• The elevator’s procurement costs are then:

• The elevator’s total cost is then:
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Theoretical Model

• The elevator’s problem then becomes:

• Which when solved yields:
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Data

• There are approximately 200 elevators 
located along the Mississippi & Illinois 
Rivers who ship grain:





Data

• For this study, I employ a subset of the 
data
– The majority of data used for this analysis 

came from the Tennessee Valley Authority 
(TVA)

– In particular, I limit myself to the activities of 
the 103 grain elevators located on the Upper 
Mississippi and Illinois rivers:
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Empirical Model
• The empirical estimation equation has two 

‘types’ of variables
– Theoretical Variables: Barge Rate, 

Transportation Rate, Distance to Nearest 
Competitor, Area Production, A Dummy 
Variable for Conglomerate Firms, and Firm 
Capacity

– Spatial Control Variables: The Number of 
Firms in the Same Pool, The Capacity of the 
Firms in the Same Pool, The % of Shipments 
Which are Corn, and The Alternative Rate



71.160Gathering Area

4.65Number of Firms in Area

4,1192,020Area Capacity (thousands)

7.692.5Distance to Nearest 
Competitor

1,505550Firm Capacity (thousands)

.131.129Alternative Rate

.0990.091 Transportation Rate to 
Elevator

.011.012Barge Rate

47,80015,400 Annual Ton-Miles 
(thousands)

AverageMedianVariable

Descriptive Statistics



Empirical Model

• The model is estimated using both OLS 
and area specific fixed effects
– Firms were defined as being in the same area 

if they were in the same “pool”



Results

• The results are presented by: 
– Rates
– Spatial measures
– And firm measures



Results - Rates

-0.08-0.19Log (Alternative 
Rate)

-1.67***-1.24**Log 
(Transportation 

Rate to Elevator)

-1.80***-1.614***Log (Barge Rate)

Fixed-Effects By 
Area

(R2: .53)

OLS (R2: .40)

Annual Output Regression Estimates



Results – Spatial Measures

0.07Number of Firms 
in Pool

0.19-0.06Log (Pool 
Capacity)

Fixed-Effects By 
Area

(R2: .53)

OLS (R2: .40)

Annual Output Regression Estimates

1.40***1.40***% of Corn

-0.04-0.02Log (Dist. To 
Nearest Comp.)



Results – Firm Measures

0.12*0.13**Log (Area 
Production)

0.430.86**Conglomerate 
Dummy

0.330.21*Log (Capacity)

Fixed-Effects By 
Area

(R2: .53)

OLS (R2: .40)

Annual Output Regression Estimates



Non-Constant Elasticity

• Possible reasons why elasticity might not 
be constant along the river

• Approaches to examining the relation 
between elasticity and the river:
– Rolling Regressions
– Locally Weighted Regressions
– Varying Coefficients
– Endogenous Switch Points



Rolling Regressions

• Same model run on a “window” of 
observations

• Elasticity is recorded and the window is 
rolled forward 1 position



Rolling Regression

• With a window size of 30:
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Rolling Regression

• Window size 40:
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Rolling Regression

• Window size 50:
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Locally Weighted Least Squares

• Again same model run on a window of 
observations

• This time with weights attached to each 
observation
– Using the tricube specification proposed by 

Cleveland (1979)



Locally Weighted Regression

• Window size 40:
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Locally Weighted Regression

• Window size 60:
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Locally Weighted Regression

• Window size 80:
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Varying Coefficients

• Based on these results, it appears that 
interacting the barge rate with river mile 
may be appropriate:
– Linear Elasticity
– Quadratic Elasticity
– Cubic Elasticity



-0.000000020.00002-0.003-1.68**Cubic Elasticity 
in River Mile 

-0.0000020.0007-1.61**Quadratic 
Elasticity in 
River Mile 

-0.0002-1.39**Linear 
Elasticity in 
River Mile 

-1.57**Constant 
Elasticity 

Cubed 
Estimate

Squared 
Estimate

Linear 
Estimate

Constant 
Estimate

Model

Upper Mississippi River



-0.00000060.0002-0.008-1.85***Cubic Elasticity 
in River Mile 

-0.000040.007*-2.06***Quadratic 
Elasticity in 
River Mile 

0.0003-1.59**Linear 
Elasticity in 
River Mile 

-1.63***Constant 
Elasticity 

Cubed 
Estimate

Squared 
Estimate

Linear 
Estimate

Constant 
Estimate

Model

Illinois River
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Endogenous Switch Points

• Conduct Break Point Tests for Every 
Possible Segmentation of the Waterway 
System
– Identify the largest statistically significant 

break point and start over



Break Points Found

Upper Mississippi River Above Lock 2 
(Mile 815.2)

7

Upper Mississippi River Between Locks 
10 (Mile 615.1) & 2 (Mile 815.2)

6

Upper Mississippi River Between Locks 
16 (Mile 457.2) & 10 (Mile 615.1)

5

Upper Mississippi River Between Locks 
27 (Mile 185.5) & 16 (Mile 457.2)

4

Upper Mississippi River Below Lock 27 
(Mile 185.5)

3

Illinois River Above Marseilles Lock 
(Mile 244.6)

2

Illinois River Below Marseilles Lock 
(Mile 244.6)

1
River SegmentGrouping



Elasticity Estimates Using Break 
Points

-1.874***
(0.618)

-1.869***
(0.611)

Elasticity

Illinois 
River 
Above 
Lock 5

Illinois 
River 
Below 
Lock 5

Illinois River

-1.987***
(0.617)

-1.448**
(0.608)

-1.702***
(0.604)

-1.668***
(0.611)

-1.815***
(0.640)

Elasticity

Above 
Lock 2

Between 
Locks 
10 & 2

Between 
Locks 

16 & 10

Between 
Locks 

27 & 16

Below 
Lock 27

Upper Mississippi River



Elasticity Estimates for the Upper 
Mississippi Using Break Points
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Elasticity Estimates for the Illinois 
Using Break Points
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Spatial Autocorrelation

• Because of the nature of the data, the 
errors of the elevators may be correlated 
spatially due to unobservable local shocks

• Therefore, a spatial autocorrelation model 
is used:

    
where     

y X
W u

β ε
ε λ ε
= +

= +



Spatial Autocorrelation
• Notice that this is no different than traditional 

OLS techniques with the exception of the error 
term which is augmented by λWε, where W is 
given by:

– where di,j is the degree of contiguity between pools i 
and j 

0     
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Elasticity Estimates for the Upper 
Mississippi Using the Spatial 

Autocorrelation Model
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Elasticity Estimates for the Illinois 
Using the Spatial Autocorrelation Model
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Spatial Autocorrelation

• The results of the spatial autocorrelation model 
are robust to the specification of the weighting 
matrix used, and are qualitatively similar to those 
found previously

• Additionally, tests for the appropriateness of the 
spatial autocorrelation model show that it is not 
warranted
– Meaning that the observable spatial variables are 

controlling for regional differences in barge 
transportation demand



Conclusion
• Developed a model of transportation demand 

and the interrelated supply decisions of 
agricultural shippers over a geographic space
– Combining the spatial literature with the 

transportation demand literature
• Estimated demand elasticities of -1.35 to -2

– Stark contrast to assumptions of planning models
• Examined the possibility of non-constant 

elasticity
• Examined the possibility of the error terms 

being spatially correlated


