
Memorandum 
 
To: Keith Hofseth, U.S. Army Corps of Engineers 
 
From: Kevin Henrickson and Wesley Wilson 
 
Date: January 25, 2004 
 
Subject: Parametric and Non-Parametric Elasticity Estimates of Barge Demand 
 
Due to the useful comments made by you at the Transportation Research Board’s annual 
meetings this January, we have investigated the assumption of constant elasticity made in 
the Henrickson and Wilson work and I would like to share the preliminary results of this 
effort with you.  Our plan is to refine some of this work and include in the final report to 
be sent to you for inclusion in the NETS paper series. 
 
The most obvious way of checking how elasticity might vary with river location is to use 
a varying coefficient model wherein the elasticity variable (log(barge rate)) is interacted 
with river mile.  When this is done we obtain reasonable results that suggests the 
elasticity becomes “less elastic” as we travel upriver.  The following graph reflects the 
estimated elasticity and river mile.   
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The figure illustrates that the magnitude of the estimated elasticity decreases with river 
mile.  This suggests that shippers located further north on the river have relatively 
inelastic demands for barge than their southern counterparts.   
 
While this is an intuitively appealing result, applying a restriction that elasticity is linear 
in origin mile is an assumption just as much as placing a constant elasticity assumption 
on the demand for barge.  Because of this we use two different estimation techniques 
aimed at letting the data uncover the relationship between elasticity and origin mile 
without specifying a functional form.1 
 
The first of these techniques is known in the time series literature as rolling regressions.   
Using this technique, we order the data according to river mile.  We run the barge 
demand equation on a “window” of data.  The window is arbitrary (and we tried different 
windows).  Essentially, we run the barge demand equation is run on the first x 
observations and the demand elasticity is recorded (the first x observations correspond to 
the shippers located furthest south).2  The barge demand equation is then run on 
observations 2 through x+1 and the demand elasticities of this equation are again 
recorded.  In essence, we are taking a window of size x and moving it along the river one 
position at a time estimating the demand elasticity in each window location.  Using a 
window size of 30 the demand elasticity is estimated as: 
 

                                                           
1 It should be noted that neither of these techniques are aimed at estimating elasticities that will be used.  
Instead, they are aimed at simply indicating the patterns of elasticities over the river, so that we can account 
for them in our model. 
2 x is arbitrarily chosen, and the only restriction on it is that it must be large enough to estimate the 
equation.  However, the smaller x is the more we can determine local elasticity patterns across the river. 
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The results with a window size of 40 are presented graphically with: 
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The results with a window size of 50 are presented graphically with: 
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With window sizes of 40 and 50, elasticity appears to be trending down for locations 
further up river, although the trend is bumpy.  With a window size of 30, it almost 
appears as if elasticity is decreasing in the middle and then increasing again, indicating 
that perhaps a parabolic term in the estimation equation would be appropriate.    
 
A second technique used to examine elasticity over space is a locally weighted 
regression.  This technique is similar to the rolling window technique with one notable 
difference.  Again, we must specify a window size in which the demand equation will be 
run and again we move the window up the river one position at a time.  The key 
difference is that we weight the observations in the window such that the middle position 
gets the highest weight and each position away from this middle gets subsequently lower 
weights.  For example, if we had a window size of 5, the middle position would be the 3rd 
observation in the window and it would receive a weight of 1, indicating that it is fully 
weighted.  Positions 2 and 4 would receive a weight of .89 each, positions 1 and 5 would 
receive a weight of .35 each, and positions 0 and 6 would receive a weight of 0 meaning 
that they are not included in the regression.  Weighted least squares is then run to 
estimate the demand elasticity for the given middle location and window size.  The 
estimated elasticity is then recorded and the window is moved up river one location.  
When this is done for a window of size 40: 
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For a window size of 60: 
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And for 80: 
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These three graphs again indicate bumpy downward trends in elasticity as one moves up 
river. 
 
The final set of estimation is conducted using these results.  Specifically, these are 
nonparametric approaches wherein a functional form for the pattern of elasticity across 
distance is not specified.  In both cases, it appears that a reasonable parametric form may 
involve higher order interactions between river mile and elasticity.  We now estimate a 
variety of different forms.  First we estimate a second order interaction term and obtain 
the following elasticity estimates: 
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This graph shows that the second order term offers little difference from the linear 
interaction term.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, a third order interaction term yields the following: 
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This latter seems to be the best representation of our observations from both the rolling 
regressions and the locally weighted regressions.  The final two estimations relate to the 
use of a linear and quadratic in log functional forms for the elasticities.  That is,  
elasticity=a0+a1*log(river mile) and elasticity=a0+a1*log(river mile)+1/2*log(river 
mile)*log(river mile).  The graphs of each elasticity against river mile are: 



Linear in logs 
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 Quadratic in logs 
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We also have plans for further refinements in the model.  Specifically, the model from 
which the estimation is derived emanates from a model of spatial competition.  From this 
model, we obtain an estimating equation that explains output of a firm in terms of spatial 
properties of the firm and its competitors over space.  The competitors enter into the 
model as observed variables – these variables are observed spatial competition variables.  
However, in the econometrics literature, it is possible that the error terms of firms located 
near each other are correlated.  In the plans for the final work, we plan to model the 
“spatial” correlation among firms.  Theoretically, we have  
 
 ( , , )i iQ Q r characterics of the firm characteristics of spatial competition ε= +  
 
In a spatial autocorrelation model, the errors among competitors are correlated over 
space.  Generally, this type of model has not been used much in economics, but we plan 
as a final piece of estimation to incorporate this correlation.  Theoretically, this should 
help the efficiency of the estimates. 
 
 
 


