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ABSTRACT 
 
 

A Study of Short-Run Grain Movements  
on the  

Inland Waterway System 
by 

Mark A. Thoma 
and 

Wesley W. Wilson
 
 
 
The Army Corps of Engineers (ACE) maintain the nation’s waterways.  ACE 
investments in the waterway are, in part, evaluated through complicated planning models.  
These models make a series of assumptions related to the demand and supply of 
transportation services and evaluate the costs and benefits through an equilibrium model 
and associated forecasts of traffic levels.  Recent evaluations of the planning models have 
focused on assumptions related to the treatment of demand, forecasts, and the failure to 
model modal and market substitution patterns.  In part, the assumptions made are for 
expediency, owing to the complexity of the underlying “true” economic model and to the 
lack of appropriate data.  In this paper, time-series techniques are used to characterize the 
relationship between river traffic and key economic variables which reflect both modal 
and market substitution patterns.  The model allows for dynamic relationships between 
variables to be evaluated, an important step because very few studies examine the 
dynamic relationship between river traffic and economic variables.  The approach is to 
use a vector autoregressive model that includes six categories of variables, lockages, rail 
deliveries, rail rates, grain bids, ocean freight rates, and barge rates.  We evaluate the 
interrelationships between these variable over time using impulse response functions.  
Variance decompositions are also constructed and are used to identify the most important 
variables affecting lockages and other variables in the model at both short and long 
horizons.  Key findings of this study that (i) barge traffic is responsive to both barge and 
rail rate changes, (ii) barge traffic is responsive to grain bids at different port locations, 
(iii) barge traffic responds strongly to changes in ocean freight rates, (iv) there are 
important dynamic adjustment patterns, and (v) the spatial location of locks and related 
tonnages are central in determining the level and relative importance of changes in key 
variables.     
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1.  INTRODUCTION 

The relationship between river traffic and economic variables such as modal and 

port prices play a key role in determining the potential benefits of waterway projects to 

increase the volume of traffic.  Generally, these relationships are identified and 

examined using static structural models, an approach that has been heavily criticized.  

For example, the National Research Council has noted a number of concerns with Army 

Corps Planning models relating to the structure of demand and the inherent substitution 

patterns.  In particular, concerns exist over the lack of knowledge of key spatial and 

time-series relationships between barge and railroad markets, and between downstream 

prices in various markets and ocean freight rates.  In this paper, time-series techniques 

are used to evaluate substitution patterns and spatial relationships and thereby take a step 

towards alleviating the concerns expressed by the National Research Council.   

The vector autoregressive model used in this paper allows the data to identify 

important patterns between the level of river traffic and the interrelationship with 

terminal prices, barge rates, rail rates, rail deliveries, and ocean freight rates.  In addition, 

the model developed here is useful for understanding how the demand for river 

transportation services is affected by shocks to barge prices and quantities as well as 

shocks to prices and quantities of products shipped down the river and prices and 

quantities of competing transportation modes.  Demanders of river transportation 

services often make decisions based upon future expectations of such variables and the 

model developed here provides a short-run forecasting model capable of uncovering 

such relationships.  This is important because, as recent experience of the Mississippi 

suggests, changes in variaibles such as ocean freight rates can have large and dramatic 
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influences on river traffic and little is know about how these variables are related.  Also, 

events such as unexpected lock closings can be captured within the model used here and 

the effects of such closures on prices and quantities of transportation services can be 

determined. 

In the analysis, we use a set of time series techniques that are designed, in part, 

to address problems with traditional structural forecasting.1  Forecasts based upon 

structural models are often poor due to lack of knowledge regarding the true structure 

and thus uncertainty about how to properly restrict the models, and due to changes in the 

structure over time that are not incorporated into the model.  In the case of river 

transportation, structural models forecast the demand for river transportation from 

forecasts of the demand for products that use river transportation such as grains and 

industrial products.2  Forecasting the demand for these products requires forecasts for 

each of the determinants of demand for each of the products that is transported on the 

river.  This is a large and complicated task that often requires questionable simplifying 

assumptions, a task that is further complicated by the lack of available data on each of 

the many influences on the demand for each of the products transported on the river.  

Such models often impose assumptions on the data, explicitly or implicitly, with little 

theoretical support or based upon theory that has not been thoroughly investigated 

econometrically.  This study proposes an alternative approach that avoids structural 

                                                 
1 Most forecasting models of river traffic rely on structural modeling.  Structural econometric models have 
as their basic building blocks behavioral equations, equilibrium conditions, and accounting identities 
derived from theoretical models.  This results in restricted models, with the restrictions often in the form of 
the exclusion of some variables from some equations.  Identification restrictions often result in further 
exclusions, often without theoretical support.  Vector autoregressive models do not impose any exclusion 
restrictions upon the data, instead, they generally rely upon restrictions on contemporaneous causal 
relationships or assume zero long-run effects of particular types of shocks.  Thus, in these models structural 
shocks are still identified, but through a different set of identifying assumptions that do not involve 
excluding variables from particular equations. 
2 Two examples are Baumel (2000) and Sparks Companies Inc. (2002). 
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modeling of complicated real-world behavioral relationships, an approach common in 

the time-series econometrics literature. 

Economists commonly use time-series techniques to understand and forecast 

variables of interest.  These models are used for forecast horizons that extend far into the 

future and for shorter horizons, as short as days or even minutes in the financial literature.  

Such techniques often rely upon vector autoregressive (VAR) models.  These models are 

interpreted as general reduced form structural models.  The genesis of VAR models3 

arises from the idea that the identification restrictions present in most structural 

econometric models are arbitrary and not supported by underlying theoretical models.  If 

the identification restrictions used to estimate structural econometric models are suspect, 

then it is not surprising that these models do not produce reliable forecasts.  An 

alternative is to rely on a different identification scheme and forego the troublesome 

identification restrictions present in structural econometric models. 

This led researchers to consider VAR models as an alternative to structural 

modeling.  Under the VAR approach, a very general reduced form is posited which 

allows each endogenous variable to depend upon every other endogenous variable in the 

model as well as any exogenous variables.4  Estimation of VAR models allows the data 

to impose restrictions as required to achieve the best fit.  This is in contrast to the 

structural approach where such restrictions are imposed as maintained hypotheses.  

Forecasts of the endogenous variables can then be derived from the estimated VAR 

models.  More importantly and central to this paper, once the VAR model is estimated, it 

can be used to simulate the reaction of key variable to shocks to other variables and 

                                                 
3 A seminal article in this area is Sims (1980). 
4 Thus, there are no exclusion restrictions as would exist under the structural approach. 
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produce estimates of how key variables are related (impulse response functions) and 

evaluate the importance of each variable (variance decompositions).   

Importantly, VAR models are often called atheoretical models, but this can be 

misleading.  VAR are atheoretic in the sense that variables are not arbitrarily excluded 

from structural equations to obtain identification, and reduced form rather than 

behavioral relationships are the focus of the modeling effort.  However, identification 

assumptions are still required in order to identify structural disturbances, and the 

identification of structural disturbances is a necessary component in estimating and 

properly interpreting the impulse response functions and variance decompositions used in 

this paper.  In the VAR literature, such restrictions are generally restrictions upon 

contemporaneous relationships, as in this paper, or restrictions regarding the long-run 

effects of particular shocks. 

In the next section, a nineteen variable VAR model is constructed.  The model 

consists of lockages on the Illinois and Mississippi rivers, rail deliveries of grain to 

export points, rail rates for grain to export points, the bid price for grain at export points, 

ocean freight rates from export points, and barge rates on the Illinois and Mississippi 

rivers.  The first two categories, lockages and rail deliveries, involve quantities while the 

last four, rail rates, grain bids, ocean freight rates, and barge rates, are prices.   

The model developed here is used to produce impulse response functions and 

variance decompositions.  These show how particular variables in the model respond to 

unexpected changes in other variables in the model, and how important each type of 

shock is in explaining variance of the variables in the model.  The central results of both 

the impulse response functions and variance decompositions are that (i) barge traffic is 
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responsive to both barge and rail rate changes, (ii) barge traffic is responsive to grain bids 

at different port locations, (iii) barge traffic responds strongly to changes in ocean freight 

rates, (iv) there are important dynamic adjustment patterns, and (v) the spatial location of 

locks and related tonnages are central in determining the level and relative importance of 

changes in key variables.  In particular, upriver traffic is sensitive to factors affecting a 

competing mode of transportation, rail rates and rail deliveries, while downriver traffic is 

more responsive to barge rates and grain bids.  Barge rates also have a large impact on 

rail deliveries, particularly rail deliveries to the Pacific Northwest.  This is noteworthy 

because many planning models do not allow for a role for barge rates in determining 

quantity variables such as lockages and rail deliveries. 

 

2.  DATA AND ECONOMETRIC MODEL 

 The VAR model and associated impulse response functions and variance 

decompositions are constructed as follows. 

First, data on river traffic through each lock and prices of commodities from 

various geographic regions are obtained from the Lock Performance Monitoring System 

(LPMS) as reported in the USDA's Grain Transportation Report.  Commodity price and 

other data are also in the USDA's Grain Transportation Report which is available on a 

weekly basis.  The variables used in the analysis are shown in Table 1.  The data are 

available consistently from the first week of 1999 through the 20th week (the last week of 

May) of 2003. 

There are six categories of variables in the model, lockages, rail deliveries, rail 

rates, grain bids, ocean freight rates, and barge rates.  These data, in customary log form, 
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are used to estimate a nineteen variable, one lag VAR model.5  The order of the variables 

in the VAR model is the same as in the table, and weekly dummies are added as 

deterministic variables to capture any seasonal effects over the year.  In addition, a 

dummy for lockages at Mississippi lock #15 is constructed that is equal to one when the 

lock is open, and zero in the weeks it is closed and the value of lockages is zero.6  For 

example, the first equation of the VAR model is Total Lockages on the Illinois at Lock 

#8 regressed upon a constant, the weekly dummies, the Mississippi lock #15 dummy, and 

one lag of each of the nineteen variables listed in the table.7  The second equation is Total 

Lockages on the Mississippi at Lock #15 regressed upon the same set on independent 

variables, a constant, the weekly dummies, the Mississippi lock 15 dummy, and one lag 

of each of the nineteen variables in the model, and so on, until the last equation which has 

Rail Deliveries to the Pacific as the left-hand side variable. 

In order to identify structural shocks in the model, the disturbances must be 

orthogonalized.  The orthogonolization of the shocks in the model is performed in the 

usual manner using the Choleski decomposition.  With this decomposition, the variables 

                                                 
5 One lag is sufficient to remove evidence of serial correlation in the equations constituting the VAR 
model.  This does not, however, necessarily imply that the effects of shocks are short-lived.  That depends 
upon the magnitude of the coefficients on the lag terms more than it does on the number of terms. 
6 An alternative approach where the time periods where the lock was closed are eliminated from the data 
does not change the results discussed below.  In addition, dropping Mississippi lock 15 from the data set 
altogether so that only lock 27 on the Mississippi and lock 8 on the Illinois are in the data set produces very 
similar results.  Thus, the results appear robust to how the time periods when lock 15 are closed are treated 
econometrically. 
7 The variables are Total Lockages on the Illinois at Lock #8, Total Lockages on the Mississippi at Lock 
#15, Total Lockages on the Mississippi at Lock #27, Rail Deliveries to Texas, Rail Deliveries to 
Mississippi, Rail Deliveries to the Pacific, the Tariff Rail Rate for Wheat from Kansas City to Houston, the 
Tariff Rail Rate for Wheat from Kansas City to Portland, the Bid Price for Portland HRW, the Bid Price for 
Gulf HRW, the Bid Price for Gulf SRW, the Bid Price for LA Corn, the Gulf to Taiwan Ocean Freight Rate 
for Heavy Grain, the PNW to Taiwan Ocean Freight Rate for Heavy Grain, the Barge Rate for the Mid-
Mississippi (Percent of Tariff from  Davenport IA), the Barge Rate for the Illinois (Percent of Tariff for the 
Illinois River, Peoria, IL),  the Barge Rate for St. Louis-Cairo (Percent of Tariff from St. Louis) , the Barge 
Rate for Lower Ohio (Percent of Tariff from Lower Ohio) , and the Barge Rate for Cairo-Memphis 
(Percent of Tariff from Cairo). 
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least likely to be affected by contemporaneous shocks to other variables are first in the 

ordering and those variables most likely to be affected contemporaneously are placed 

last.  The results for variance decompositions are presented by groups so that exact 

identification of particular shocks within groups is not essential.  Note that quantities 

appear in the model ahead of prices so that one element of the identification assumption 

used here is, in essence, that prices are sensitive to contemporaneous quantity shocks, but 

the reverse is not true.  Price shocks affect quantities only with a one period or greater 

lag, which in this model is one week or more. 

Under these assumptions, which are that demand shocks affect price 

contemporaneously but affect quantities with at least a one week lag, and that supply 

shocks affect both price and quantity contemporaneously, the shocks in the model 

associated with quantities (i.e. the first two sets of equations for lockages and rail 

deliveries) can be interpreted as supply shocks and those with prices (i.e. the last four sets 

of equations) as demand shocks. 

The model is estimated using the data described above and the estimated model is 

used to produce impulse response functions (IRFs) and variance decompositions (VDCs).  

The IRFs show the impact that an unanticipated structural shock to one variable has on 

the time path followed by another.  For example, an IRF can plot the effect that a change 

in the barge rate between two points has on the amount of traffic through a particular lock 

as well as other locks.   

Because a shock to any one variable can affect all other variables, there are 

(19)(19)=361 impulse responses.  Thus, this discussion will focus on a subset of the 
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responses.8  The VDCs complement the IRFs.  The IRFs show the pattern over time of 

the response of one variable brought about by a structural shock to another variable.  The 

VDCs assess the importance of the shock in explaining the variance of the responding 

variable at each point in time.  Thus, the IRFs give the sign and the pattern of the 

response while the VDCs assess the importance of the structural shock in explaining the 

variability of a particular variable at each point in time after the shock occurs.  The VDCs 

are also voluminous, so as with the IRFs, only a representative subset is presented. 

 

3.  IMPULSE RESPONSE FUNCTIONS 

There are six categories of variables in the model, lockages, rail deliveries, rail 

rates, grain bids, ocean freight rates, and barge rates.  As just noted, because the complete 

set of results is too voluminous to present in its entirety, representative examples from 

each category are shown.  First, IRFs for shocks to quantities (lockages and rail 

deliveries) are presented and discussed followed by the IRFs for shocks to prices (rail 

rates, grain bids, ocean freight rates, and barge rates).  As noted above, under the 

identification scheme used here, these are structural supply and demand shocks rather 

than reduced form shocks (i.e. linear combinations of structural shocks) so that the IRF’s 

can be interpreted as the response to independent structural disturbances. 

 

A.  Shocks to Total Lockages 

Figure 1a shows how lockages at Illinois lock #8, Mississippi lock #27, and rail 

deliveries to Mississippi and the Pacific change in response to approximately a 25% 

                                                 
8 The entire set of responses is available in an appendix.   
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increase in the supply of lockages on the Mississippi at lock #15.9  The figures show a 

4% drop in lockages at Illinois lock #8 and a quick return to pre-shock levels, though 

there is a small negative effect that persists.  Lockages at Mississippi lock #27 increase 

5%, an effect that peaks in the second week and, while the effect is somewhat persistent, 

the peak tapers substantially and is largely eliminated after around four weeks.  Thus, the 

increase in the supply of lockages at Mississippi lock #15 increases lockages downriver 

at Mississippi lock #27, though not by as much as the increase at lock #15, and decreases 

lockages on the Illinois.  The increased lockages also cause rail deliveries to the 

Mississippi to increase around 2.5%, and rail deliveries to the Pacific increase almost 4% 

at the peak.  Both rail responses are slightly noisy at first, but after three to five weeks 

exhibit a clear positive response to the shock.  Thus, the increase in traffic on the river 

causes a substitution towards rail deliveries. 

Figure 1a examines how quantities respond to the shock to lockages.  Figure 1b 

examines the response of prices.  The figure shows how the Kansas City-Houston Wheat 

Rail Rate, the Gulf HRW Price Bid, the Gulf to Taiwan Freight Rate, and the Illinois 

Barge Rate respond to a shock to the supply of lockages at Mississippi #15.  The Kansas 

City-Houston rail rate exhibits little response to the shock to lockages at Mississippi lock 

#15, a result common across all shocks and for both rail rates.  Thus, rail rates are largely 

exogenous with respect to the other eighteen variables in the model.  To the extent that 

there is a response to the increase in lockages, it is positive.  The Gulf HRW bid price 

does not respond strongly either.  The response is positive and persistent, but only around 

1% at its peak.  Ocean freight rates show a larger positive response to the increase in the 

                                                 
9 The size of the shock in all cases is, as usual, one standard deviation.  Because lock 15 closes in the 
winter, there is a large variance in lockages so that a one standard deviation shock is relatively large. 
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supply of locks of around 1-2%, and the response is persistent.  The response of the 

Illinois barge rate is around the same magnitude and, after a delay of a week or two, 

shows a clear decline that persists for just over ten weeks.  Overall the price responses are 

not large, at most 1-2%, with barge and ocean rates responding stronger than rail rates 

and grain bids to the shock to lockages. 

The results for shocks to Illinois lock #8 and Mississippi lock #27 (not shown in 

figure 1, but they are shown in the appendices) are qualitatively identical with two 

notable exceptions.  First, a supply shock to Illinois lock #8 causes lockages at 

Mississippi lock #15 to decline.  Thus, when Lock #15 on the Mississippi receives the 

shock, lockages at Illinois #8 decline whereas when the shock is to Illinois #8, 

Mississippi #15 lockages decline.  An increase in either decreases the other.  Lockages at 

Mississippi #27 increase in both cases.  Second, a supply shock to lockages at Mississippi 

lock #27 causes barge rates to increase rather than decrease except for the Lower Ohio 

rate which shows little response.  Thus, the effect on barge rates depends upon which 

lock receives the unanticipated increase in traffic.  Upstream lockage shocks lower barge 

rates while downstream shocks raise barge rates.  

 

B.  Shocks to Rail Deliveries 

The next example is a supply shock to rail deliveries, in particular a shock of 

approximately 14% to rail deliveries to the Pacific.  With the exceptions noted below, the 

responses to rail delivery shocks are noisy, particularly in the initial weeks following a 

shock, and the results in figures 2a and 2b for shock to Pacific rail deliveries reflect this 

overall characteristic for rail delivery shocks.  The figures show a muted response of 
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lockages at Illinois lock #8 which initially increase then, after a delay of three weeks, 

decline by around 1% then return to pre-shock levels.  The response at Mississippi lock 

#15 is much stronger with an initial decline of around 3% followed by a fairly quick 

return to pre-shock levels, though there is some evidence of a persistent negative 

response.  As for rail deliveries, rail deliveries to Mississippi and Texas are both initially 

fairly noisy, then, after three to five weeks, settle down and exhibit a persistent negative 

effect.  Thus, the increase in the supply of rail deliveries to the Pacific causes a decline in 

lockages at Mississippi lock #15, an uncertain effect on lockages at Illinois lock #8, and 

effect that is initially positive then negative, and a persistent negative effect on rail 

deliveries to Texas and Mississippi after an initial turbulent response.   

The figures show the response to a supply shock to Pacific rail deliveries.  The 

results differ in two noteworthy ways when the shocks are to Texas and Mississippi rail 

deliveries rather than to Pacific rail deliveries.  First, in both cases, particularly an 

increase in rail deliveries to Texas, barge rates show a clear and consistent decline for 

five to ten weeks after the shock.  Thus, shocks to rail deliveries to Texas and Mississippi 

affect barge rates negatively, while shocks to Pacific rail deliveries do not have much 

impact on barge rates.  Second, though the effect is only around 1%, ocean freight rates 

show a clear positive response to an increase in the supply of Texas and Mississippi rail 

deliveries, unlike rail deliveries to the Pacific.  Thus, shocks to Mississippi and Texas rail 

deliveries affect barge and ocean freight rates, while shocks to the Pacific do not. 
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C.  Shocks to Tariff Rail Rates 

Figures 3a and 3b show how lockages at Illinois lock #8 and Mississippi lock 

#15, rail deliveries to Texas and the Pacific, the Kansas City-Portland wheat rail rate, the 

Gulf to Taiwan ocean freight rate, the Portland HRW price, and the Cairo-Memphis 

barge rate respond to a one standard deviation increase in the Kansas City to Houston rail 

rate for wheat.  Figure 3a shows that a positive demand shock for rail deliveries causing 

an approximately .5% increase in the tariff rail rate for wheat10 per ton causes a 3% 

decline in lockages on the Illinois lock #8, and a 4% increase at lock #15 on the 

Mississippi, and that the results are persistent with effects lasting beyond fifteen weeks in 

both cases.  The detailed results show that lockages at Mississippi #27 also increase, but 

not as much and not as persistently.  Rail deliveries to Texas decline, both immediately 

and over a longer time period, though there is an intermediate period at around six weeks 

where the effects are small.  The pattern of the response is an immediate drop of nearly 

2%, a return to zero after about six weeks, and then a sustained fall.  Rail deliveries the 

Pacific move in the opposite direction, increasing immediately with the positive effect 

sustained for many weeks.  In this case there is no intermediate period where the effects 

diminish.  Thus, overall, a shock to the rail rate for wheat from Kansas City to Houston 

causes a substitution towards Mississippi locks #15 and #27 with stronger effects upriver, 

towards rail deliveries to the Pacific, and away from Illinois lock #8 and rail deliveries to 

Texas. 

Figure 3b shows how prices respond to the rail rate shock brought about by an 

increase in demand for rail services.  The Kansas City to Portland wheat rail rate does not 

                                                 
10 The one standard deviation shock is relatively small because the variation in rail rates is small in the 
sample. 
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respond strongly nor does the Gulf to Taiwan freight rate.  The Portland HRW price does 

respond, slightly negatively at first, then after a few week delay a positive response of 

around 1%.  The Cairo-Memphis barge rate also responds, falling by around 2% then 

gradually returning to zero over the course of many weeks. 

The additional results in the appendix are generally consistent with the results 

shown in the figures with one exception.  When the demand shock is to the Kansas City 

to Portland rail rate rather than the Kansas City to Houston rail rate, the quantity 

responses are almost all in the opposite direction.  For example, when the Kansas City to 

Portland rail rate increases, lockages on the Illinois increase rather than decrease, 

lockages on the Mississippi decrease at lock #15 rather than increase and show a small 

positive response downriver at lock #27.  Rail deliveries to the Pacific decline rather than 

increase, rail deliveries to Texas increase initially rather than decreasing.  The price 

responses are all the same, i.e. barge rates decline as in figures 3a and 3b, grain bids 

increase, and so on. 

 

D.  Shocks to Grain Bids 

The next example shows the response to a demand shock resulting in increased 

grain bids.  In particular, Figures 4a and 4b presents the response of quantities and prices 

to a shock to the Portland HRW price of approximately 2%.  Figure 4a shows that the 

response of lockages at Illinois lock #8 is positive and exceeds 2%, while the response of 

lockages at Mississippi lock #15 is negative with a small and quick decline beginning the 

second week after the shock followed by a more prolonged decline of similar magnitude 

several weeks later.  The response of Mississippi lock #27 (not shown in the figure) is 
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small and positive.  Turning to rail deliveries, the increase in the bid price of HRW in 

Portland causes a 5% decline in rail deliveries to Texas and a decline of similar 

magnitude in deliveries to Mississippi (not shown in the figure).  Rail deliveries to the 

Pacific initially decline slightly after a delay of one week, and then show a sustained 

increase in the weeks that follow.  Overall, the results are that an increase in the grain bid 

price in Portland brought about by an increase in the demand for grain causes lockages on 

the Illinois to increase at lock #8, to decrease at lock #15 on the Mississippi, and to 

increase slightly at lock #27 on the Mississippi.  The shock also causes rail deliveries to 

Texas and Mississippi to decline, and rail deliveries to the Pacific to increase.   

The response of prices in figure 4b shows that the Kansas City to Houston wheat 

rail rate does not exhibit a discernible response, which is true for rail rates generally in 

response to bid prices.  The results show that the Gulf HRW increases and follows a 

pattern very similar to the pattern for the Portland HRW response to its own shock, that 

after a delay of several weeks the freight rate from Portland to Taiwan increases, and that 

the Illinois barge rate, and barge rates generally, show a sustained increase due to the 

increase in the grain bid prices. 

The results in the appendices are generally consistent with those in the figures.  

One exception is the response of rail deliveries to a demand shock that increases the 

Louisiana bid price for corn.  In this case, rail deliveries to Texas fall substantially and 

for a prolonged time period, and rail deliveries to Mississippi and the Pacific Northwest 

show a large and sustained increase.  When the shock is to the Gulf HRW price, rail 

deliveries to Texas increase while deliveries to the Pacific Northwest decrease.  

Deliveries to Mississippi initially decrease as well, and then turn positive after many 
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weeks have passed.  Thus, the results indicate that the response of rail deliveries depends 

upon the particular price that is shocked, with the response differing for shocks to the 

Portland HRW price, the GUL HRW price, and the price of corn in Louisiana.  There is 

also some evidence that the response of ocean freight rates depends upon the particular 

grain price that changes, but the difference is not as stark as for rail deliveries.  

 

E.  Shocks to Ocean Freight Rates 

Figures 5a and 5b examine quantity and price responses to a demand shock for 

ocean freight deliveries causing an increase in the Gulf to Taiwan ocean freight rate.  The 

quantity responses shown in figure 5a show that lockages at Illinois lock #8 fall for a 

prolonged period after an initial delay of two weeks, that lockages at Mississippi lock #15 

initially increase, then decrease after five to ten weeks, and that lockages at Mississippi 

lock #27 mirror those at lock #15 but are much more muted (not shown in the figure, see 

appendix).  The figure also shows that Texas rail deliveries are relatively unaffected by 

the shock to the ocean freight rate, and that Pacific rail deliveries increase after a one 

week delay.  In addition, rail deliveries to Mississippi increase for a substantial period of 

time after the shock (not shown in the figure, see appendix). 

Figure 5b shows the response of prices to the demand shock to the ocean freight 

rate from the Gulf to Taiwan.  As is the case generally, and for all the ocean freight rate 

shocks and rail rates, there is little noticeable response of the Kansas City to Houston 

wheat rail rate.  The Portland HRW bid price declines in response to the shock, the 

Pacific Northwest to Taiwan ocean freight rate increases, and the Lower Ohio barge rate 

increases, each for a substantial period of weeks. 
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In the expanded results in the Appendix the results are generally the same with 

two notable differences.  First, barge rates decrease when the demand shock is to the 

Pacific Northwest ocean freight rate, the opposite of the result when the shock is to the 

Gulf ocean freight rate.  Second, the response of quantities, lockages and rail deliveries, 

depends upon which of the two ocean freight rates is shocked by an increase in demand.  

When the shock is to the Pacific Northwest ocean freight rate, lockages on the 

Mississippi, Rail deliveries to Mississippi, and rail deliveries to Texas move in the 

opposite direction as compared to a shock to the Gulf ocean freight rate, lockages on the 

Illinois at lock #8 move in the same direction, and once again Texas rail deliveries do not 

change substantially.  Thus, when the shock is to the Pacific Northwest ocean freight rate 

rather than the Gulf rate, lockages on the Mississippi, rail deliveries to the Mississippi, 

and Pacific rail deliveries all move in the opposite direction and fall.  This indicates that 

when the Gulf ocean freight rate increases, there is substitution towards the Pacific 

Northwest, but when ocean freight rates from the Pacific Northwest increase, rail 

deliveries and lockages fall in all locations except for rail deliveries to Texas, which are 

unaffected. 

 

F.  Shocks to Barge Rates 

The final example examines impulse responses to a demand shock for barge 

services resulting in increased barge rates.  The particular example is a shock to the 

Cairo-Memphis barge rate.  The four graphs in Figure 6a show the responses of lockages 

at lock #8 on the Illinois River, lock #27 on the Mississippi, rail deliveries to Texas, and 

rail deliveries to the Pacific to a shock to the Cairo-Memphis barge rate.  The graphs 
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show that an increase in the barge rate of approximately 3% generates a 2.5% decline in 

lockages on the Illinois at lock #8, and a 2% decline in lockages on the Mississippi at 

lock #27.  In the expanded results showing demand shocks to all barge rates, this case is 

noteworthy because the change at lock #27 on the Mississippi is larger than the change at 

lock #15.  In all other cases, when the shock is to barge rates further upriver, the change 

at lock #27 is generally a muted version of the change at lock #15.  The shock brings 

about a 4% increase in Texas rail deliveries, and a 2% decrease in rail deliveries to the 

Pacific after a delay of two weeks.  This suggests that the increase in barge rates causes a 

substitution towards rail deliveries to Texas and away from barge transportation. 

Figure 6b shows how prices respond to the demand shock to the Cairo-Memphis 

barge rate.  As in previous cases, the response of the wheat rail rates from Kansas City to 

Houston exhibits little if any response.  The response of the Gulf HRW bid price is small 

and negative after a delay of two weeks, and the response of the ocean freight rate from 

the Pacific Northwest to Taiwan is positive, but small.  The response of barge rates is 

more substantial, with the Mid-Mississippi barge rate, and barge rates generally, falling 

in response to the increase in the Cairo-Memphis barge rate.  Thus, upriver barge rates 

fall when downriver barge rates increase. 

The results for demand shocks to barge rates shown in the appendices are similar.  

However, the response of the quantity variables depends upon the particular barge rate 

shocked.  In addition, when the two barge rates furthest downriver, the Lower Ohio and 

Cairo-Memphis rates, are shocked by a change in demand all barge rates upriver fall.  

However, when barge rates even further upriver are shocked, barge rates downriver 
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increase, perhaps due to the bypassing of upriver barge transportation through the use of 

other transportation modes. 

 

4.  VARIANCE DECOMPOSITIONS 

Impulse response functions document how variables in the model respond over 

time to their own shocks and to shocks to other variables.  However, impulse response 

functions do not tell us how important the shocks are in explaining variation in the 

variable under consideration.  For example, the left-side of the top half of Figure 6a 

shows how lockages respond to a shock to the Cairo-Memphis barge rate at various time 

horizons up to one year after the shock.  But among all nineteen shocks identified in the 

VAR system, how important is this particular shock in explaining variation in lockages at 

these time horizons?  Does a shock to the Cairo-Memphis barge rate cause more or less 

variation in lockages than, say, a shock to the Portland HRW bid price?  Variance 

decompositions (VDCs) can be used to answer these and other questions. 

 

A.  Variance Decompositions for Lockages 

 Variance decompositions decompose the variance of a particular variable, say 

lockages at Mississippi lock #15, at each forecast step (from one to fifty-two in the 

figures) into the fraction of the variance attributable to shocks to each of the seventeen 

variables in the model.  The first set of numbers in Table 2 present variance 

decompositions for one of the lockage variables, Mississippi lock #15, at steps of 1, 2, 4, 

8, 12, 20, 26, 40, and 52.11  The VDCs have been accumulated by category of variable.  

                                                 
11 Space does not permit listing the complete set of variance decompositions for all seventeen variables in 
the model or for every one of the 52 steps.  Representative VDCs for each category are presented and any 
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For example, consider the entry of .11 under the heading Rail Rates for step 12 of the 

decomposition for Mississippi Lock #15.  This indicates that 11% of the variance in 

lockages after 12 weeks can be explained by the combined effect of supply shocks to rail 

rates, where the combined effect is the sum of the individual VDC entries for the two rail 

rate variables.   

 Several conclusions emerge from examination of the VDCs.  First, the largest 

factor affecting the variance of lockages is shocks to lockages.  This is the usual outcome 

for VDCs, i.e. that the largest fraction of the variability at all horizons is explained by a 

variables’ own shocks.  Second, setting aside the fraction of the variance of lockages 

explained by shocks to lockages, rail deliveries and rail rates each account for 

approximately 10% at the 52 week horizon, while grain bids, ocean rates, and barge rates 

each account for around 5%.  Thus, none of these variables has a dominating influence 

individually, but their combined effect is large, e.g. rail rates and barge rates account for 

17% of the total variation at the one year time horizon.  At shorter horizons such as two 

weeks, the most important factors are rail deliveries and barge rates which account for 

12% of the variation.  As time passes, rail rates and ocean rates become more important. 

 The more detailed results in the appendices show that the results are generally 

very similar across the three lockage variables.  One notable difference is that the 

sensitivity of lockages at Mississippi lock #27 to rail rates and rail deliveries is smaller 

than for Mississippi lock #15 and Illinois lock#8 while the effect of other variables is 

larger.  Thus, rail rates and rail deliveries affect upriver lockages more than downriver 

lockages.  For instance, after 12 weeks, shocks to rail rates and rail deliveries explain 

                                                                                                                                                 
notable differences from the results in the appendices are explicitly noted.  As with the IRFs, the complete 
set of VDCs can be obtained in a appendix available from the authors. 
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20% (9% plus 11%) of the variation in lockages at Mississippi lock #15, and 14% of the 

variation at Illinois lock #8, but only 6% of the variation at Mississippi lock #27.  Grain 

bids and barge rates, which account for 6%+8% = 14% of the variation at this horizon, 

are more important. 

 Thus, from the results in Figures 1a and 1b along with the results in the Appendix 

F show that upriver lockages are most sensitive to factors affecting rail deliveries and rail 

rates while downriver lockages are more sensitive to shocks to barge rates and grain bids.  

The result that barge rates are as important as other factors in explaining downriver 

lockages is noteworthy because river transportation planning models assume that 

lockages are invariant to changes in barge rates brought about by changes in the demand 

for barge deliveries.  

 This is also consistent with the results from the IRFs.  Recall there is only one 

case, a supply shock to a downriver barge rate, where the response downriver at 

Mississippi lock #27 exceeds the response to the shock upriver.  In all other cases, the 

upriver response at Mississippi lock #15 and at Illinois lock #8 is larger than the response 

downriver at Mississippi lock #27.  Downriver lockages are affected more by downriver 

barge rates than those further upriver. 

 

B.  Variance Decompositions for Rail Deliveries 

 At short time horizons, e.g. two weeks, the most important factors explaining the 

variance of rail deliveries are lockages at 14%, grain bids at 5%, and barge rates at 6%.  

At four weeks, the numbers are 14%, 10%, and 16% so that these three variables, 

lockages, grain bids, and barge rates, account for 40% of the total variation.  At longer 
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horizons, e.g. one year, the most important variables are lockages at 15%, rail rates at 

9%, grain bids at 16%, and barge rates at 25%.   

 The detailed results for rail deliveries to Mississippi, Texas, and the Pacific are 

generally consistent.  However, it is worth noting that rail deliveries to the Pacific are 

more responsive to changes in barge rates and ocean rates than are rail deliveries to Texas 

and Mississippi, and that the variables in the model do not explain as much of the 

variability in Mississippi rail deliveries as the other two rail delivery variables.  That is, 

Mississippi rail deliveries are much more invariant to shocks than the other two rail 

delivery variables.  But even in this case the price variables explain 24% of the total 

variation at the one year horizon.   

 Overall, lockages, rail rates, grain bids, and barge rates all play a role in 

determining the variability in rail deliveries, with the role for barge rates in explaining 

rail deliveries of particular note due to its absence in many planning models.   

 

C.  Variance Decompositions for Rail Rates 

 The third set of numbers in Table 2 shows the VDC for the Kansas City-Houston 

wheat rail rate, which is very similar to the VDC for the Kansas City-Portland rate.  In 

the short-run, lockages play the largest role, explaining 15% at the one week horizon, 

followed closely by rail deliveries at 11%.  Thus, changes in quantity variables caused by 

supply shocks explain most of the variation at this horizon.  As the horizon is increases, 

the quantity variables become less important and changes in price variables due to 

demand shocks become more important so that, at the 52 week horizon, lockages and rail 

deliveries explain 18% of the variation, down from a peak of 32% at the two seek 
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horizon, and prices explain 30% with grain bids at 16%, ocean rates at 4%, and barge 

rates at 10%.  Ocean freight rates have very little impact on variation in rail rates at any 

horizon. 

 

D.  Variance Decompositions for Grain Bid Prices 

 In the short-run, at one or two weeks, only rail rates have a notable impact on 

grain bid prices, explaining 17% of the variation at the two week horizon.  As the horizon 

increases, river lockages, rail deliveries, rail rates in particular, and barge rates have an 

effect on the variation in the bid price explaining 11%, 9%, 37%, and 12% of the total 

variance at the 52 week horizon.  Ocean rates do not have a large impact at any horizon. 

 The more detailed results for the other grain bids are very similar.  The only 

difference is a smaller role for rail rates, e.g. around 27% rather than 37%, at the 52 week 

horizon, but this still indicates a substantial role for rail rates. 

 

E.  Variance Decompositions for Ocean Freight Rates 

 The results for the two ocean freight rates are very similar with no notable 

differences.  The results in the table show that the Gulf to Taiwan ocean freight rate is 

relatively unaffected by anything other than its own shocks until the four week horizon, 

though at the two week horizon lockages, rail deliveries, and grain bids account for over 

15% of the total variation.  At the four week horizon, lockages explain 10% of the 

variation, rail deliveries explain 11%, and barge rates 7%.  At longer horizons, e.g. 52 

weeks, two variables emerge as dominant, lockages and grain bids which together 

account for more than 60% of the variation.  Also important are rail deliveries at 12% and 
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rail rates at 20%.  These four variables, lockages, grain bids, rail deliveries, and rail rates, 

explain over 85% of the total variation at the 52 week horizon.  Barge rates do not affect 

ocean freight rates substantially at any horizon. 

 

F.  Variance Decompositions for Barge Rates 

 There are five barge rates examined and the results are surprisingly similar across 

the five rates.  The results in table 2, for the St. Louis-Cairo barge rate, show that in the 

short-run, rail deliveries, grain bids, and ocean rates exert the most influence explaining 

14%, 10%, and 7% of the variance.  As the horizon progresses to 52 weeks, river 

lockages become increasingly important explaining 10%, rail deliveries falls slightly to 

11% from a peak of 15%, rail rates become more important as do grain bids which 

increase to 14% and 16%, and the percentage explained by ocean rates stays fairly steady 

and is 9% at 52 weeks.  Overall, the variation at the 52 week horizon not explained by its 

own shocks, which is 60% of the variation, is explained fairly evenly by the other five 

categories of variables in the model so that 12% for each is a fairly good approximation 

of the outcome.  This is true generally in the detailed results except that ocean rates are 

generally a percentage or two lower and grain bids three or four percentage points higher.   

 

5.  CONCLUSIONS 

 This paper uses time-series techniques, in particular impulse response functions 

and variance decompositions, to characterize the short-run relationships among nineteen 

variables in a VAR model designed to trace the short-run interconnections among 

variables impacting lockages on the Mississippi and Illinois rivers.  The model contains 



 

 

24

six categories of variables, lockages, rail deliveries, rail rates, grain bids, ocean freight 

rates, and barge and long horizons. 

The results in this paper are useful for illuminating the causal relationships among 

variables in the model and for understanding the behavioral relationships present in the 

data, and can be used to guide short-run and long-run planning models.  For example, the 

results of both the impulse response functions and variance decompositions show that the 

location of a lock on the river is an important factor in determining its response to shocks.  

In particular, upriver traffic is sensitive to factors affecting a competing mode of 

transportation, rail rates and rail deliveries, while downriver traffic is more responsive to 

barge rates and grain bids, particularly downriver barge rates.  Barge rates also have a 

large impact on rail deliveries, particularly rail deliveries to the Pacific Northwest.  This 

is noteworthy because many planning models do not allow for a role for barge rates in 

determining quantity variables such as lockages and rail rates.  Variance decompositions 

and impulse response functions are constructed which identify the most important 

variable affecting lockages and other variables at both short deliveries.
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TABLE 1  Weekly Data from 1999:01 through 2003:20 Collected from the USDA’s  
         Grain Transportation Report Used in the VAR Model 
 
 
A.  Lockages 
 
Total Lockages on the Illinois at Lock #8 
Total Lockages on the Mississippi at Lock #15 
Total Lockages on the Mississippi at Lock #27  
 
B.  Rail Deliveries 
 
Rail Deliveries to Texas 
Rail Deliveries to Mississippi 
Rail Deliveries to the Pacific 
 
C.  Tariff Rail Rates 
 
The Tariff Rail Rate for Wheat from Kansas City to Houston 
The Tariff Rail Rate for Wheat from Kansas City to  
 
D.  Grain Bid Prices 
 
The Bid Price for Portland HRW 
The Bid Price for Gulf HRW 
The Bid Price for Gulf SRW 
The Bid Price for LA Corn Portland  
 
E.  Ocean Freight Rates 
 
The Gulf to Taiwan Ocean Freight Rate for Heavy Grain 
The PNW to Taiwan Ocean Freight Rate for Heavy Grain 
 
F.  Barge Rates 
 
Barge Rates for the Mid-Mississippi (Percent of Tariff from  Davenport IA) 
Barge Rates for the Illinois (Percent of Tariff for the Illinois River, Peoria, IL)   
Barge Rates for St. Louis-Cairo (Percent of Tariff from St. Louis)  
Barge Rates for Lower Ohio (Percent of Tariff from Lower Ohio)  
Barge Rates for Cairo-Memphis (Percent of Tariff from Cairo) 
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TABLE 2  Variance Decompositions  
 
 

Mississippi Lock #15 
 

River Rail Rail Grain Ocean Barge 
Step Locks Deliv. Rates Bids Rates Rates 
 1 1.00  .00  .00  .00  .00  .00 
 2   .85  .08  .03  .01  .00  .04 
 4   .79  .07  .06  .02  .01  .04 
 8   .72  .08  .10  .03  .02  .05 
12   .69  .09  .11  .03  .02  .06 
20   .67  .10  .11  .03  .03  .07 
26   .66  .10  .11  .03  .03  .07 
40   .65  .10  .11  .04  .04  .06 
52   .64  .10  .11  .06  .04  .06 

 
 

Pacific Rail Deliveries 
 

River Rail Rail Grain Ocean Barge 
Step Locks Deliv. Rates Bids Rates Rates 
 1   .13  .87  .00  .00  .00  .00 
 2   .14  .73  .02  .05  .00  .06 
 4   .14  .51  .04  .08  .01  .21 
 8   .12  .40  .06  .09  .04  .28 
12   .12  .36  .07  .10  .06  .29 
20   .14  .32  .08  .13  .06  .27 
26   .15  .30  .08  .15  .06  .26 
40   .15  .28  .09  .16  .06  .25 
52   .15  .28  .09  .16  .06  .25 

 
 

Kansas City-Portland Rail Rate 
 

River Rail Rail Grain Ocean Barge 
Step Locks Deliv. Rates Bids Rates Rates 
 1   .15  .11  .74  .00  .00  .00 
 2   .21  .11  .62  .03  .00  .03 
 4   .21  .08  .59  .06  .00  .06 
 8   .16  .07  .56  .11  .01  .09 
12   .14  .06  .54  .14  .02  .10 
20   .12  .06  .53  .17  .03  .10 
26   .11  .06  .53  .17  .03  .10 
40   .12  .05  .52  .16  .04  .10 
52   .13  .05  .51  .16  .04  .10 
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Portland HRW Bid Price 
 

River Rail Rail Grain Ocean Barge 
Step Locks Deliv. Rates Bids Rates Rates 
 1   .01  .02  .10  .87  .00  .00 
 2   .02  .02  .17  .76  .00  .03 
 4   .06  .06  .21  .60  .01  .06 
 8   .11  .09  .22  .49  .02  .06 
12   .14  .10  .23  .44  .03  .06 
20   .14  .10  .27  .36  .04  .09 
26   .14  .10  .30  .32  .03  .10 
40   .12  .10  .35  .30  .03  .11 
52   .11  .09  .37  .29  .03  .12 

 
 

Gulf to Taiwan Ocean Freight Rate 
 

River Rail Rail Grain Ocean Barge 
Step Locks Deliv. Rates Bids Rates Rates 
1   .03  .04  .03  .05  .85  .00 
2   .04  .06  .02  .05  .80  .03 
4   .10  .11  .01  .03  .69  .07 
8   .17  .17  .02  .04  .52  .09 
12   .22  .18  .02  .09  .41  .08 
20   .28  .16  .04  .19  .28  .06 
26   .29  .15  .05  .24  .22  .05 
40   .29  .13  .07  .31  .16  .04 
52   .29  .12  .08  .32  .14  .04 

 
 

St. Louis-Cairo Barge Rate 
 

River Rail Rail Grain Ocean Barge 
Step Locks Deliv  . Rates Bids Rates Rates 
1   .00  .01  .02  .10  .12  .75 
2   .04  .14  .04  .10  .07  .60 
4   .05  .15  .06  .08  .05  .59 
8   .10  .13  .12  .09  .07  .50 
12   .11  .11  .15  .09  .08  .46 
20   .10  .11  .15  .13  .08  .43 
26   .10  .10  .14  .16  .08  .41 
40   .10  .10  .14  .16  .09  .40 
52   .10  .11  .14  .16  .09  .39
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Impulse Response Function
Response of Ill. #8 Lockages to a shock to Miss. #15 Lockages
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FIGURE 1a  Responses of Lockages at Illinois #8, the Cairo-Memphis Barge Rate, 
and Rail Deliveries to Mississippi and the Pacific to a Shock to Lockages at 
Mississippi #15 
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Impulse Response Function
Response of KC-Hou. Wheat Rail Rate to a shock to Miss. #15 Lockages
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FIGURE 1b  Responses of the KC-Houston Wheat Rail Rate, the Gulf HRW Price 
Bid, the Gulf to Taiwan Freight Rate, and the Illinois Barge Rate to a Shock to 
Lockages at Mississippi #15 
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Impulse Response Function
Response of Ill. #8 Lockages to a shock to Pacific Rail Deliveries
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FIGURE 2a  Responses of Lockages at Illinois #8, Mississippi #27, and Rail 
Deliveries to Mississippi and Texas to a Shock to Pacific Rail Deliveries 
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Impulse Response Function
Response of KC-Port. Wheat Rail Rate to a shock to Pacific Rail Deliveries
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FIGURE 2b  Responses of the KC-Portland Wheat Rail rate, the Portland HRW 
Bid Price, the PNW to Taiwan Freight Rate, and the St. Louis-Cairo Barge Rate to a 
Shock to Pacific Rail Deliveries 
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Impulse Response Function
Response of Ill. #8 Lockages to a shock to KC-Hou. Wheat Rail Rate
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FIGURE 3a  Responses of Lockages at Illinois #8, Mississippi #15, and Rail 
Deliveries to Texas and the Pacific to a Shock to the Kansas City-Houston Rail Rate 
for Wheat 
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Impulse Response Function
Response of KC-Port. Wheat Rail Rate to a shock to KC-Hou. Wheat Rail Rate
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FIGURE 3b  Responses of the KC-Portland Wheat Rail rate, the Portland HRW 
Bid Price, the Gulf to Taiwan Freight Rate, and the Cairo-Memphis Barge Rate to a 
Shock to the KC-Houston Wheat Rail Rate 
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Impulse Response Function
Response of Ill. #8 Lockages to a shock to Port. HRW Price
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FIGURE 4a  Responses of Lockages at Illinois #8, Mississippi #15, and Rail 
Deliveries to Mississippi and the Pacific to a Shock to the Portland HRW Price 
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Impulse Response Function
Response of KC-Hou. Wheat Rail Rate to a shock to Port. HRW Price
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FIGURE 4b  Responses of the KC-Houston Wheat Rail rate, the Gulf HRW Price, 
the PNW to Taiwan Freight rate, and the Illinois barge rate to a Shock to the 
Portland HRW Price 



 

 

39

Impulse Response Function
Response of Ill. #8 Lockages to a shock to Gulf To Taiwan Freight Rate
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FIGURE 5a  Responses of Lockages at Illinois #8 and Mississippi #15, and Rail 
Deliveries to Texas and the Pacific to a Shock to the Gulf to Taiwan Freight Rate 
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Impulse Response Function
Response of KC-Hou. Wheat Rail Rate to a shock to Gulf To Taiwan Freight Rate
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FIGURE 5b  Responses of the KC-Houston Wheat Rail Rate, the Portland HRW 
Price, the PNW to Taiwan Freight Rate, and the Lower Ohio Barge Rate to a Shock 
to the Gulf to Taiwan Freight Rate 
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Impulse Response Function
Response of Ill. #8 Lockages to a shock to Cairo-Memphis Barge Rate
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FIGURE 6a  Responses of Lockages at Illinois #8, Mississippi #27, and Rail 
Deliveries to Texas and the Pacific to a Shock to the Cairo-Memphis Barge Rate 
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Impulse Response Function
Response of KC-Hou. Wheat Rail Rate to a shock to Cairo-Memphis Barge Rate
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FIGURE 6b  Responses of the KC-Houston Wheat Rail Rate, the Gulf HRW Bid 
Price, the PNW to Taiwan Ocean Freight Rate, and the Mid-Mississippi Barge Rate 
to a Shock to the Cairo-Memphis Barge Rate 
 
 


